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Summary. A common, traditional potential energy expression for the theoretical 
binding energy in the simplest LCAO treatment of H ~ (i.e. using ls eigenfunctions 
of the atoms) is derived in the context of Ruedenberg's theory, by virtue of 
a cancellation between the interference kinetic energy and an identifiable positive 
part of the interference potential energy arising from charge moving away from 
"dative" protons. Thus, although electron sharing raises the total potential energy, 
its net contribution to the binding energy may be equated to the negative part of 
the interference potential energy which is due to charge moving towards "opposite" 
protons. It is shown that this potential energy expression remains approximately 
valid when the atomic orbitals are optimally scaled. For contracted orbitals, the 
cancellation within the interference energy is not exact, and the explanation of 
contraction through the variation principle is less transparent from a potential 
energy viewpoint than it is in Ruedenberg's analysis. However, when the orbitals 
are both contracted and polarised the cancellation is closer to being exact, and the 
minimisation of the total energy is achieved through competition between the term 
representing the atomic promotion and deformation energy on the one hand, and 
the usual potential energy expression on the other. 

Key words: H +, binding energy o f -  Interference charge density - Variational 
reasoning 

1 Introduction 

At the fundamental level there is only one theory of binding in H +, and that 
corresponds to an exact solution of the Schroedinger equation. However there is 
within quantum chemistry a tradition which looks for explanation at a different 
level, in terms of physical models or analogies which will qualitatively but reliably 
reproduce the results of the Schroedinger equation for H ~ (and other prototypes) 
and anticipate such results for more complicated molecules. It is at this level that 
there has been more than one interpretation of binding in H + and some need of 
a resolution of their apparently conflicting claims. 

From the earliest applications of quantum mechanics to H + and Hz until about 
thirty years ago there was apparently no problem concerning the qualitative 
understanding of chemical binding. The historic idea of sharing electrons be- 
tween atoms had received quantum mechanical expression in the form of overlap 
between atomic wavefunctions. It was known that for stable molecules this overlap 
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produced an accumulation of charge between the nuclei; and that a theorem, the 
virial theorem, required potential energy in a molecule to be lower than in its 
separate atoms. Hence arose the widespread view that "the accumulation of charge 
between the nuclei reduces potential energy". There appears to be no single original 
source for this view, although it was adopted by very many textbooks. The strength 
of electron sharing was sometimes attributed to the overlap charge density, some- 
times to the overlap integral. 

In a series of papers beginning in 1962 [1] and culminating in three papers 
[2-4] between 1970 and 1975, Ruedenberg and his school mounted an important 
criticism of the traditional theory of binding. Ruedenberg contended, as had 
Hellmann [5] before him, that the constructive overlap between atomic wavefunc- 
tions reduces kinetic energy, not potential energy. Ruedenberg then argued that 
this reduction of kinetic energy causes (through the variational principle) the 
wavefunction to contract, with a resulting lowering in potential energy and a 
raising of kinetic energy. The lowering of potential energy is essentially atomic in 
character, and is exceeded by the rise in kinetic energy associated with the same 
parts of the charge density. Kinetic energy has a dual role in Ruedenberg's theory. 
It opposes the shrinkage of the atomic densities, but this opposition is weakened 
through electron sharing, leading to lower potential energy than is found in the 
isolated atom. 

Textbooks, especially at the elementary level, have been slow to adapt their 
treatments of binding to include the role of kinetic energy. This may have been due 
to criticism by Bader [6, 7] from the standpoint of the virial theorem. However by 
1978 Ruedenberg's theory had been endorsed by Mulliken [8] and by Kutzelnigg 
[9]. The role of kinetic energy has also been acknowledged by Atkins [10]. Daudel 
[11] has remarked: "Ruedenberg has shown that the usual presentation is not 
convenient". On the other hand, Levine [12] considers the question as not yet settled. 

As a result of Ruedenberg's work there is a general recognition of the fact that 
binding cannot be understood without considering both kinetic and potential 
energy. However this raises the question: why was the traditional theory able to 
account for the binding energy in terms of potential energy integrals only? Is this 
result an artefact of a poor wavefunction and, if not, how can it be reconciled with 
Ruedenberg's theory? The present work is an attempt to find answers to these 
questions. Because Ruedenberg's ideas are so important to our own analysis, a brief 
commentary on these ideas will be given first. 

2 Ruedenberg's Theory 

Without loss of generality, the ground state of the HE molecule may be represented 
by the normalised sum of atomic orbitals a and b, i.e. 

~9 = (a + b)/(2 + 2S)1/2, (1) 

where 

S = <alb> (la) 

It is well known that by taking sufficiently flexible functions a and b the ip function 
may become, through the variation method, an exact solution to the electronic 
Schroedinger equation. In this section we shall be content with the simple form of 
~b first proposed [-13] by Finkelstein and Horowitz (FH) where 

a = (~3/rO 1/2 exp ( -- (r~), (lb) 
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and 

b = (ff3/7~) 1/2 exp ( -- ~rb). (lc) 

The only variational parameter in the F H  wavefunction is the orbital exponent ~, 
for which accurate values have been provided by Kim et al. [14] and also by 
Feinberg et al. [2]. Thus we consider orbital contraction (increasing ~) but not 
orbital polarisation at this stage. 

The charge density, p, can be expanded as follows: 

p = O 2 = (a 2 + b 2 + 2ab)/2(1 + S) (2) 

Ruedenberg's theory now focuses upon the difference between the molecular 
charge density, p, and the "quasi-classical" charge density, pq¢, which would be 
found if atomic densities and not atomic wavefunctions were additive, i.e. 

where 

and 

p = pqc + pi, (3) 

pq~ = (a 2 + b2)/2 (3a) 

pl = 1-2(ab) - S(a 2 + b2)3/(2 + 2S). (3b) 

The term pi is called the interference density. This is the quantity which Rueden- 
berg identifies with electron sharing and which, he contends, shows the essentially 
quantum mechanical nature of the problem. The interference density describes the 
shift of electronic charge from the atomic regions into the bond. It is positive in the 
region between the protons where the overlap charge density dominates; but p~ has 
significant negative "tails" in the vicinity of the protons. 

The expectation value of the total energy 

E = @IH[~,)  = [ ( a l H l a )  + 2 ( a l n l b )  + ( b l n l b > ] / ( 2  + 2S) (4) 

may be partitioned into "atomic", "quasi-classical" and "interference" contribu- 
tions, E a, E q¢ and E i, just as p was partitioned into pq° and pi, i.e. 

E = E a + E qc + E i, (5) 

where 

and 

E" + E q¢ = [ ( a l H l a )  + ( b l H I b ) 3 / 2  (Sa) 

E i = [ 2 ( a [ H l b )  - S ( a l H l a )  - S ( b l H l b ) 3 / ( 2  + 2S). (5b) 

In comparing Eqs. (5a) and (5b) with (3a) and (3b) it is apparent that the matrix 
element (a  [HI b)  has been associated with the density fragment ab, and (alH[ a)  is 
associated with a 2. Now, as far as the potential energy operator V is concerned, 
these associations are straightforward because (~lVI ~,> is the same as ~Vp dr; and 
therefore, if p is divided into fragments then a corresponding division is possible for 
the total potential energy integral. However, for the kinetic energy operator ~, the 
same reasoning does not apply, because (~klT~l~k) is not the same as ~Tpdz.  
Ruedenberg I-5] has given a formal connection in terms of a density matrix. We 
shall relate here this division of E to the expectation value of a novel intermediate 
wave function. 
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We wish to calculate the energy ( E  a -[- E qe) from a wavefunction ~' which will 
give the charge distribution pq~, i.e. 

I~'12 = (a 2 + b2) /2 .  (6) 

One solution to this equation is 

~' = (a + i b ) / x / ~ .  (7) 

It is now easy to see that, in fact, 

g a -~- E qe = ( 0 ' [ n [ l ~ ' )  (8) 

is in agreement with (5a) and that 

E i =  ( ~ l n l ~ , )  - (~,'lnl~,'> (8a) 

is in agreement with (5b). The form of ~k' is physically reasonable: one would expect 
that the linear combination of atomic orbitals with phase difference rt/2 would be 
a non-bonding state, since the combination (a + b) with phase difference zero is 
a binding state and the combination (a - b) with phase difference n is antibinding. 
This is confirmed by actual calculations which show that (E ~ + E q~) is equal to the 
energy of a hydrogen atom at a distance R from a bare proton, or two "half atoms" 
at a distance R apart, with no repulsion between the "half electrons". 

Since 

we find 

( a l H l a )  = ( b l H I b ) ,  (9) 

e a + e qe = (alHJa) (10)  

= (a l  - ½ 172 - 1/r~ - 1/rb + 1 / R l a ) .  (10a) 

E ~ and E q¢ are defined by 

E ~ = ( a l -  172/2 - 1/rala) = 0.5~ 2 - ( (10b) 

= - 0 . 5  + ( ~  - 1 ) 2 / 2  

and 

E qc= (a[ 1 / R -  1 /rbla)  = 1 / R -  ~(a2/rb)dZ (10c) 

At large internuclear distances, where ~ = 1 and 1/R cancels the Coulombic 
integral, and E a has the value - 0.500 (all energies are in atomic units). Both E a 
and E q~ increase monotonically as R decreases and the optimum value of ~ in- 
creases until, at R = 2.0ao, when ~ = 1.2387, the value of (E ~ + E qc) lies above the 
energy of the dissociation products by about half of the theoretical binding energy. 

Since E i is the difference between (~b[Hl~k) and (~k'lHl~k'), it can be said to be 
the driving force, variationally speaking, behind the wavefunction rearrangement 
~k' ~ ~k, i.e. it is the "cause" of binding. The question is: which part of E i, the kinetic 
or the potential, makes E i negative? Ruedenberg showed that it is the interference 
kinetic energy T i, and that the interference potential energy V i is positive and 
smaller than [ Ti[. This is an important point, because we shall show later there is 
another way to look at E i. Ruedenberg's analysis of E i is 

E l i :  T i q  - V i ,  (11) 
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where 

and 

Z i =  [ 2 ( a l T l b )  - S ( a l f ' l a )  - S ( b l T " [ b ) ] / ( 2  + 2S), ( l la)  

V i = [ 2 ( a l V I b )  - S ( a l V l a )  - S ( b l V I b ) ] / ( 2  + 2S), ( l lb)  

V =  - 1 / r a -  1/rb.  ( l lc)  

The quantity T i is negative for all internuclear distances, it has a value of - 0.180 
at R = 2ao and goes through a minimum near to R = lao. The V i term is positive 
at all internuclear distances, it has a value of 0.054 at R = 2ao and goes through 
a maximum near R = 2ao. The sign of T i reflects the fact that the transfer of charge 
density into the internuclear region has reduced the gradient of the density at all 
points along the internuclear axis, thereby reducing the bond-paralM component 
of the kinetic energy. The sign of V ~ reflects the fact that charge has been moved 
from a region near to the protons where V is low to a region where V is higher. 
Both T i and V ~ are zero for the united atom and for the separated atoms. The 
magnitudes of both T i and V i are enhanced by orbital contraction (i.e. increasing 

from 1.0) for all distances below about R = 4ao, and this is in spite of the fact that 
the overlap integral between the contracted orbitals is smaller. (As Ruedenberg 
remarked, the idea that large overlap integrals favour binding does not apply to 
scale variation). 

In view of the fact that similar ideas will be used in connection with a potential 
energy interpretation, we recapitulate the binding process and the role of E ~ in it. 
The wavefunction rearrangement can be thought of as a three stage process 
(eventually four stages, when polarisation of atomic orbitals is also included). This 
process can be described by the following scheme, where the superscript zero 
indicates ~ = 1 and normalising constants have been omitted for convenience: 

a ° ~ (a ° + ib °) ~ (a ° + b °) ---} (a + b). 

The initial state of the system, a °, describes a normal hydrogen atom in a state of 
repulsion with a bare proton at a distance R. In the first step a state is formed with 
the same kinetic and potential energies as the initial state but with a symmetric 
distribution of charge. Although this step involves no energy change it has an 
important effect on the interpretation of what follows, because the electron has lost 
any identification with a particular nucleus. In the second step a bonding state 
(a ° + b °) is formed through the lowering of energy which accompanies the intro- 
duction of new terms in charge density, namely p~. This step is "driven" by the E i 
term. The final stage is the scale variation of the atomic orbitals which leads to 
a lower total energy and to a redistribution between kinetic and potential energy 
reestablishing the virial relation. Here again it can be argued that it is the 
interference energy, and T i in particular, which determines variationally whether 

increases or decreases from 1. 
A glance at Eqs. (10) shows that (E a + E qc) will behave under scale variation 

very much like (0.5 ffz _ ~), because (i) for a wide range of internuclear distances the 
effect of ~ variation upon the Coulombic integral, f . (a2/rb)dz,  is quite small 
compared with the effect of ~ variation on the monatomic terms, and (ii) E a behaves 
like the energy of an isolated hydrogen atom on scale variation i.e. it goes up 
whether ~ decreases or increases from 1. It follows that the total energy E will be 
reduced by the scale variation which reduces Ei; and since IT~I is the larger and 
more ~-sensitive part of E ~, it will usually be the determinant of the way ~ changes. 
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At R = 2ao orbital contraction reduces E i, while within E a a decrease in the 
monatomic potential energy from - 1 to - ~ is more than cancelled by a rise in 
kinetic energy from 1/2 to ~2/2. The optimum value of ~ corresponds to the point 
of balance between decreasing E i and increasing E a. At this point, the virial 
relationship 

2:r + V = 0 (12) 

is fulfilled. (iP is the total kinetic energy, and 12 is the total potential energy 
including l /R).  Ruedenberg has called the behaviour of kinetic energy near 
R = 2ao paradoxical in the sense that an initial lowering of kinetic energy through 
sharing leads to a state of higher T and lower lP through contraction. It is 
sometimes said that "the orbitals contract because T i is negative". This is true in 
the region of the equilibrium internuclear distance, where the virial relation 
indicates the directions in which T and I ? must change. But over the whole range of 
R it is the way that T i changes with ~ which determines whether the orbitals expand 
or contract. For R = 6ao, for example, T i is reduced by a slight expansion of the 
orbitals and optimal ~ is 0.995. As Ruedenberg noted, there is nothing paradoxical 
about the role of kinetic energy here or indeed for any R greater than 3ao, because 
the total kinetic energy is lower than in the hydrogen atom. 

Ruedenberg's theory was criticised by Bader [6] on the grounds that the 
"reference" atomic orbitals change during the contraction step from being true 
hydrogen ground states to promoted states a and b in which the virial relationship 
(for the atom) is violated. Prior to contraction it was the molecular wavefunction 
(a ° + b °) which did not conform to the virial relation. Thus negative contributions 
to the kinetic energy appear to be important for binding either when the molecular 
wavefunction gives an inappropriately low molecular kinetic energy, or when the 
"reference" atomic state gives an inappropriately high atomic kinetic energy. This 
criticism is not persuasive. 

There are two criticisms involved here. The first is an objection to the use of 
virtual molecular states in which the distribution between kinetic and potential 
energy violates the virial relation. This would seem to be an excessive restriction to 
place on a method of understanding binding through the variation principle, 
a principle which actually explains the virial relation. The second point concerns 
the way in which the various contributions to the total energy are grouped together 
for cancellation. Bader seems to dislike the combination of the monatomic terms 
into a promoted atom energy because this is positive (relative to the normal atom 
energy) and may serve to exaggerate the significance of the negative contributions 
to the total binding energy. Yet the promotion energy can be expressed as the 
difference between two expectation values, and its magnitude is small compared 
with magnitudes of the kinetic and potential energies which comprise it. 

The general question as to which terms may validly be cancelled or combined is 
important because there is more than one way in which combinations can be made. 
It is fairly clear that one should not combine energy terms derived from pq~ with 
terms from pi, because then the resulting term will not be identifiable with an 
expectation value or a difference in expectation values, according to a recipe such 
as Eq. (8) or Eq. (8a). Also, the terms derived from pqC, the promoted atom energy 
and the quasi-classical electrostatic energy, have distinct physical meanings and 
should be kept apart. However, we shall see that for the terms derived from pi there 
is an interesting combination which is different from Ruedenberg's. 

Bader's other main criticism [7] was that orbital contraction (through increase 
in ~) in hydrogen is exceptionally large. In molecules where the atomic orbital 
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exponents have not changed very much from free atom values, the increase in 
kinetic energy required by the virial theorem must be achieved by promotion of 
electrons from one atomic orbital to another. It may be that in cases like these 
something like the usual potential energy theory may be more appropriate. It is 
interesting to note that the most detailed examination of Ruedenberg's theory on 
larger molecules, by Goddard et al. [15], concentrated on simple hydrides. 

Ruedenberg's advocacy of the variational principle as a method of understand- 
ing binding was very important and our approach will be strongly influenced by it. 
Nevertheless, the deficiencies of a variational wavefunction of given general form 
are not the same for all types of molecules; and therefore the processes which are 
imagined to correct those deficiencies may not be equally valid for types of 
molecule. It may be that Ruedenberg's theory and the dual role of kinetic energy is 
a particularly suitable explanation of binding when hydrogen is involved. 

3 The connection between Ruedenberg's theory 
and the conventional (Potential Energy) approach 

Ruedenberg's theory focuses on the difference between the molecular and the sum 
of atomic charge densities, and leads to an expression for the binding energy 
involving several terms each of which is an expectation value or is a difference 
between two expectation values. In this way deformations of the wavefunction may 
be interpreted variationally. The potential energy (PE) treatment of H~ which 
antedates Ruedenberg's analysis, by contrast, focuses on the difference between the 
molecular and atomic Hamiltonians. The "extra" terms in the molecular Hamil- 
tonian are potential energy operators and these terms seem to suggest sharing of 
electrons between atomic sub-systems; but they do not necessarily guarantee 
binding. Moreover, for the "simple" LCAO wavefunction (i.e. when a = a °, b = b °) 
the PE approach leads to an expression for the binding energy which does not 
appear to be a difference between two expectation values. We shall therefore try to 
derive the usual PE expression within the context of Ruedenberg's theory, and 
thereby bring it in line with variational reasoning. 

The essential element of our analysis is a decomposition of the interference 
density into two unambiguously defined parts, p~, and p~, as follows: 

p i=  p~, + p~, (13) 

where 

and 

piA = (ab --  Sa2 ) / (2  + 2S) (13a) 

p~ = (ab - SbZ) / (2  + 2S) (13b) 

The two fragments, p~, and p~, can be thought of as pieces of charge density which 
were associated, in the non-bonding state, with the "half" atoms A and B respec- 
tively, and which have moved into the internuclear region as a result of orbital 
interference. These two fragments are not, of course, geometrically separate; they 
are interpenetrating. 

It is now possible to recognise two different contributions to vi: a large positive 
part, Viway, which is the sum of interactions between each fragment and its 
"parental" proton; and a negative part, V~ . . . .  d, which is the sum of the interactions 
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between each fragment and its "opposite" proton: 

Viawar = -- ~(pin/ra) dz  --  ~(p~/rb)  dz, (14) 
i V~oward = -- ~(pA/rb) dz - ~(p~/ra) dz, (15) 

The total interference potential energy, as given by Eqs. (11b) and (11c), may now 
be expressed as 

Vi= - ~pi(r~-1 + rb I) d~ = Viway + V~oward- (16) 

It is noteworthy that although V~way and V~oward are identifiable parts of the 
potential energy, neither corresponds to a difference in expectation values, unlike 

i i V i. Because the molccule is homonuclear, both Vaway and Vtow~rd can bc expressed 
as twice the contribution from p~ only, so that 

V~w~y -- ( a l -  1 / r d b  - S a ) / ( 1  + S)  , (17) 

V~ . . . .  d = (,al - 1/rblb --  S a ) / ( 1  + S)  . (18) 

Again, because the molecule is homonuclear, it is evident from Eq. ( l la)  that T i 
may be formulated as 

T i = ( a l -  172/21b - S a ) / ( 1  + S ) .  (19) 

Returning now to Ruedenberg's expression for the total energy (5), and reexpress- 
ing E i with the help of Eqs. (11), (16) and (19), we find 

i i E = E ~ + E qc + T i + V~way + Vtoward. (20) 

Consider first the simple theory with ~ = 1, a = a ° and b = b °. A remarkable 
cancellation occurs between T ~ and V~way- From Eqs. (17) and (19) one obtains 

T i + Vawayi __-- (a°1172/2 - 1/r~l b° - S a ° ) / ( 1  + S) . (21) 

But a ° is an eigenfunction of the free a tom Hamiltonian: 

( -  V2 /2  - 1/ra)a ° = - 0.5a °, (22) 

so that 
i T i + V~w~y - - 0.5(a°l b° - S a ° ) / ( 1  + S) = 0 (23) 

Since, furthermore, E a is - - 0 . 5  when ~ is 1, the total energy expression (20) 
becomes 

E = - 0.5 + E qc + V~oward. (24) 

By substituting for E qc from Eq. (10c) and for V~ . . . .  a from Eq. (18), it is easy to see 
that Eq. (24) is the same as the expression for the binding energy as presented in 
countless textbooks, i.e. 

- (binding energy) = E + 0.5 = ( a ° l l / R  - 1/rbl a° + b°)/(1 + S). (24a) 

The derivation of Eq. (24) through the cancellation of T ~ with Viaway suggests 
a choice of ways in which to visualise the role of the interference density. Either one 
can regard the transfer of charges p~ and p]3 into the bond as producing an increase 
in the total potential energy which is exceeded by the decrease in kinetic energy; or 
one can say that the transfer of these charges produces an increase in potential 
energy with respect to "dative" protons which exactly compensates for the decrease 
in kinetic energy, so that the net result is a decrease in the potential energy resulting 
from the approach of the charges towards the "opposite" protons. The latter point 
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of view is neat, in that V~oward is then approximately the binding energy itself at 
R = 2ao (E qc being small for spherical orbitals). On the other hand, VI . . . .  d does 
not have the form of an expectation value difference and, moreover, is only equal to 
an expectation value difference when the cancellation between V~way and T i is 
exact. 

It is interesting to see why the usual textbook derivation of Eq. (24a) does not 
uncover the fact that the transfer of charge away from each proton produces 
a decrease in kinetic energy and a compensating increase in potential energy. The 
expectation value of the total energy is given by 

E = (a + b l n l a  + b)/(2 + 2S). (25) 

At some point in the usual derivation advantage is taken of the symmetry of the 
wavefunction and of H and this implicitly reformulates the expectation value 
[Eq. (25)] as 

E = (a[n la  + b>/(1 + S) (26) 

= (al - 172/2 - l/Ya - -  1/r b -}- 1/Rla + b)/(1 + S) (26a) 

= (al - 172/2 - 1/rala + b)/(1 + S) 

+ ( a l l / R  - 1/rbla + b)/(1 + S). (26b) 

The substitutions a = a ° and b = b °, together with the eigenvalue equation (18), 
then yield 

E = - 0 .5(a°la  ° + b°)/(1 + S) + ( a ° l l / R -  1/rbla ° + b°)/(1 + S), (27) 

which is clearly the same as the familiar result (24a). The first term in Eq. (26b) is 
actually the same as (E a + T i + V~w~y) and it also contains the expectation value of 
the kinetic energy; but its contributions to the binding energy are concealed by the 
use of the free atom eigenvalue equation. The contribution of the kinetic energy is 
even harder to see when Eq. (26) is derived from the molecular eigenvalue equation, 
rather than from the expectation value (25). This derivation, which would be valid 
only if (a + b) were the exact wavefunction, has been given in general form by 
Richardson and Pack [16] and leads to a formula for energy differences which 
might be called the 'Integral Hel lmann-Feynman theorem with an atom-in- 
molecule reference state'. 

All the derivations of Eqs. (24) and (24a) are quite sound at R = 5ao, where 
= 1.00 is optimal and the simple MO wavefunction is the same as the FH 

wavefunction and quite close to the exact wavefunction. At shorter internuclear 
distances the simple MO wavefunction gives the wrong distribution between total 
kinetic and potential energies, due to lack of orbital scaling. Can one therefore 
expect that Eq. (24) and the picture of binding suggested by its derivation will retain 
some validity at internuclear distances where ff > 1 and where the atomic orbitals 
are not eigenfunctions of free atom Hamiltonians? The answer, surprisingly, is yes; 
because if one returns to (20) and recalculates all the integrals from appropriately 

i scaled atomic orbitals then (E ~ + T i + V~w~y) is still found to remain constant and 
remarkably close to - 0.500 for all R from 1.5ao to 0% as shown in Fig. 1. In this 
range of R the deviations from - 0.500 are negative, but amount  to little more 
than 10% of the theoretical binding energy for any given R. For  distances less than 
1.5ao the value of (E ~ + T ~ + Viw~y) rises steeply. 

At R = 2ao one finds 
E a + T i + V~w~y = -- 0.506 (28a) 
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i i i . Fig. 1. (E "¢ + V~o,,~a) and (E ~ + T i + V,w,y + 0.5) for F H  wavefunction: [] E a~ + Vto~,~a, x E ~ + 
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Fig, 3. Analysis of the interference energy for F H  wavefunction: x El; ! Vi; [] V~w~y,i " • V,o~,a~a,i . 
~ T i ;  C) T i +  i V a w a y  

and 

E qe -~" Vloward -~- - -  0 . 0 8 1 .  (28b) 

Thus, the bindino eneroy [(0.5 + E" + T i + V~w,r) + (E ~ + V~o,,,a)] is dominated 
by the potential energy expression (E ~ + Vlow,,a) whether the orbitals are scaled or 
not. The improvement in the theoretical binding energy which results from scaling 
can thus be principally associated with the decrease in (Eq~+ Vtow,,a) from 
- 0.0537 (for ~ = t) to - 0.0806 (for the optimN value ~ = of 1.2387). The value of 

(0.5 + E" + T ~ + V,w.y) decreases from 0 to - 0.006 which represents only 7% of 
the theoretical binding energy of - 0.087. 

i 9 Why does scaling have such a small effect on ( E " +  T~+ V,w~). Explicit 
evNuation shows that, for the FH wavefunction, one has the formal mathemafi~l  
identity T ~ = - ~ V~w,~, so that 

T ~ + V ~ ~ . ~ ,  = - v ,~ .~ ,  ( ~ -  ~).  (2~c)  

~ t h  ~ V...y > 0. Thus, even when ~ > 1, the residual t e ~  (T ~ + V~w~) is small. In 
addition, it is largely cancelled by the increase in E ", i.e. by the promotion energy 
resulting from scaling. The decomposition of (E" + T ~ + ~ V~.y + 0.5) in terns of 
its contributions is displayed in Fig. 2 as a function of the internuclear distance. 

The approx~a te  cancellation of T ~ with V~.y for appropriately scaled 
wavefunctions means that the picture of bin~ng suggested by the simplest MO 
wavefunction can be qualitatively retained for the FH wavefunction, Once again 
one can take the view that the negative, bond forming part of E ~ is V~o~ ,  as an 
alternative to Ruedenberg's view that it is T ~. The PE viewpoint focuses on the 
negative contribution to E i arising because ( a l l / r ~ b )  is greater than S (a l l / rb la) ,  
whereas the kinetic energy viewpoint focuses on the negative contribution to E ~ 
arising ~cause  (al -- ~ / 2 { b )  is smaller than S(a l  - ~ / 2 l a ) .  As with the simple 
MO wavefunction, ~ V,o~.,~ is approximately equal to the bin~ng energy at 
R = 2ao; whereas T ~ has a magnitude of about twice the theoretical binding energy 
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at that distance (see Fig. 3). At internuclear distances less than R = 2ao, the 
quantity (T ~ + V,way) is not small: it drops steeply and goes through a minimum at 
about R = 0.8ao as shown in Fig. 3. 

Can the PE viewpoint be related to a variational interpretation of orbital 
scaling in H~-? Referring to Eq. (20), one finds that, at most internuclear distances, 
scaling changes (Eq~+ V~ . . . .  d) in the same direction as the total energy. For  
R greater than 5ao a slight expansion of the orbitals lowers (E q¢ + V~ . . . .  d) and 
raises (E" + T i + V~way). When R is less than 2.5ao, a contraction in the orbitals 
lowers both V~ . . . .  d and Eq% and produces a rise in E" which, for ( > 1.1, over- 

i comes the drop in (T ~ + V,w,y). There is however a considerable range, namely 
5ao > R > 3ao, where V~o~,~rd is raised by orbital contraction and where the small 
decrease in E qc is insufficient to make (E q¢ + Viow~d) lower overall. In this region 
the optimal value of ( is established largely by competition between the rise in E" 
and the drop in ( T i +  V~w,y). Over the whole range of R the more elegant 
explanation of scaling is Ruedenberg's viewpoint, emphasising the role of T ~. 

4 The inclusion of polarisation 

The case for the usefulness of the PE point of view is somewhat strengthened when 
the analyses of section 2 are applied to the wavefunction originally proposed [-17] 
by Guillemin and Zener (GZ). This function can be regarded as being as close to an 
exact solution of the Schroedinger equation as our purposes require. The GZ 
wavefunction has the same form as Eq. (1) 

~k = (~ +/~)/(2 + 2S) 1/2 , (29) 

with 

S = (~]f l)  (29a) 

but now the atomic wavefunctions are given by 

= 7 exp [ - (~lra - ~2rb)], /~ = 7 exp [- - (~2ra - ~arb)], (29) 

where 7 is a normalisation constant. These wavefunctions behave like 1 s orbitals 
polarised towards each other. The wavefunction ~ reduces to the FH form when 
~2 = 0. Increasing ~2/~1 results in increasing polarisation which transfers charge 
from outside the protons into the internuclear region. Once again Kim et al. [14] 
have provided optimum value of ~1 and ~z for a range of R. All the quantities 
computed for the FH wavefunction (T i, Vi~way, V~ . . . .  d, Eqe) were recomputed for 
the GZ case by simply replacing a by c~ and b by/~ in the appropriate equations. 
The total binding energy is (0.5 + E" + E qc + E i) where E ~ is defined by 

E ' =  ( e l -  1/217z - 1/ralu). (30) 

First we look at the quantity (E qc + V~owa~d) which was approximately the same 
as the theoretical binding energy for the FH wavefunction. It is now equal to about 
150% of the binding energy at R = 2a0 for the GZ wavefunction. At each R the 
value of (Eq¢+ V[ow,rd) lies below the corresponding FH value by a factor of 
between 2 and 3. The rest of the total energy, (E" + T i +  Viaway), n o w  increases 
monotonically with decreasing R. This is shown in Fig. 4. 

The behaviour of (E ~ + T i + Viaway) for the GZ wavefunction is analysed in 
Fig. 5. It appears that polarisation has increased V~way and decreased I Til, so that 
Viw~y > IT i] for all R/> 1.4ao, but never by more than 0.015. The cancellation 
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Fig. 4. (E qe + V~owara ) and (E" + T ~ + Vt~.~y + 0,5) for GZ wavefunction: [] E q* + Vtow~a,i " x E" + 
T i + i V~w~y + 0.5 

i Fig. 5. Analysis of (E ~ + T i + V~,~r + 0.5) for GZ wavefunction: x E ~ + T ~ + V i~,~r + 0.5; ~ E ~ + 
0 .5 ;© T~+ i , V i Vaw~y, ~ T~; [] away 

Fig. 6. Analysis of the interference energy for GZ wavefunction: x E~; B V~; [] V i~,~r," • Vto,~,~t ," 
~ T~; © T~+ ~ ]Vaway 

between T i and Viaway is generally much better than it was for the F H  wavefunction. 
Near to R = 2ao the value of (E" + T i + V~,~ar) is - 0.448 which is quite dose  to 
E" ( -  0.459); while (E q° + Vlowara) is -- 0.154. There is an echo here of one of 
quantum chemistry's old ideas - that energy (E" + 0.5) "traded away" in forming 
a promoted state is "recovered with profit" in forming a covalent bond. 

The analysis of the interference energy in Fig. 6 shows how accurately E i may 
be equated to i , Vto~.~a. Indeed, l/'~owara appears to be a robust quantity which mimics 
the binding energy itself while the wavefunction is improved from the F H  
wavefunction (Fig. 3), to the GZ wavefunction (Fig. 6). The value of V~owara at 
R = 2ao is very dose  to the theoretical binding energy for each wavefunction while 
the minimum value of Vio,~ara occurs at R = 2ao for the simple MO, at R ,,~ 1.1ao 
for the FH wavefuncfion and at R = 1.4ao for the GZ wavefunction. The residual 
quantity i ~ (simple MO) to 0.035 V~,~-~y) varies wildly from zero - (Tawar + more 
(FH) to 0.011 (GZ). 

When one looks at the polarisation step 

a + b ~ a + f l .  
from a variational point of view, it is found (at R = 2) that decrease in energy takes 
place in the E qc term, from 0.012 for the FH function to - 0.051 for GZ. This arises 
from the change in the Coulombic integral, 

~(a2/r~) d~ ~ I(a21r~) d~. 

In the same step, the interference energy E ~ actually increased from - 0 . 1 2 7  to 
- 0.093. There is a change in the promotion energy meanwhile from 0.029 to 0.041. 

These results are understandable on physical grounds. Polarisation transfers 
charge from outside the nuclei into the bond. This increases the magnitude of the 
Coulombic integral; but it also 'compensates' the nuclear regions for charge lost in 
electron sharing, thereby making T i and E i less negative. The fact that E ~¢ and E ~ 
change in opposite directions during the polarisafion step is a further reason for 
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keeping E q¢ and~ terms derived from E i apart in our variational thinking; although 
V~ . . . .  d does ch~inge in the same direction as E qc in the polarisation step. At 
R = 2ao one finds that V~ . . . .  d changes from --0.085 (FH wavefunction) to 
- 0.104 (GZ wavefunction). The "traditional" potential energy expression, let it be 

said again, is a combination of E q° and VI . . . .  d- 
If contraction and polarisation are combined into a single step, i.e. 

a° +b° ~ e +  fl, 

the change in E qc (from 0.027 in the simple MO to - 0.051 in GZ) is still greater 
than the corresponding change in E i (from -0 .081 to -0.093). However, it 
should be noted that the magnitude of E i, i.e. the contribution to the binding 
energy from electron sharing, is greater than the quasi-classical electrostatic term 
for all the wavefunctions considered. 

5 Concluding remarks 

Our calculations have explained what seemed to be a puzzle in the "simple" LCAO 
theory of H] :  that the total potential energy is higher than the value found in the 
free atom, but the binding energy can be expressed entirely in terms of potential 
energy integrals. The explanation lies in a cancellation between T i and Vawayi which" 
leaves the theoretical binding energy being represented approximately by (minus) 
V~ . . . .  d. This result remains approximately valid even when the wavefunction is 
properly scaled, and when it is polarised. At the same time, by placing this 
traditional potential energy expression within the context of Ruedenberg's theory 
we have placed the traditional picture in the context of variational reasoning. 

Has this work in any way modified the role to be given to kinetic energy in 
binding? Clearly both kinetic and potential energy must be considered in order to 
understand binding, and a convenient cancellation of terms in the total energy does 
not eliminate the physical roles of those terms, at the very least because cancella- 
tions are not unique. For example at great internuclear separation, the cancellation 
within E i is nearly exact and the binding energy is accurately given by V~ . . . .  d. 
Nonetheless, it is the reduction in kinetic energy which makes the total energy 
lower than in the isolated atom at these distances. However, near the equilibrium 
distance, the kinetic energy plays a dual role and, in circumstances where the 
cancellation between T i and Viaway is close to being exact, it may be conceptually 
simpler to explain the deformation of the wavefunction under the variation prin- 
ciple without T ~. These circumstances do not obtain with the FH wavefunction, but 
may be found for the GZ wavefunction. We do not know which of these two 
situations is the more typical of covalent binding in other molecules. 

Covalent binding arises from the delocalisation of charge due to electron 
sharing; and delocalisation is essentially a quantum mechanical phenomenon. The 
problem has always been to explain why the charge distribution in a molecule takes 
the form it does, using reasoning which is consistent with quantum mechanics. The 
holistic nature of quantum mechanics is more evident for the kinetic energy than it 
is for the potential energy: but for that very reason it is also appealing to emphasise 
the role of potential energy if the charge density is to be analysed into parts. The 
construct V~ . . . .  d could prove of considerable value for a qualitative understanding 
of charge distributions in molecules, if certain other contributions to the varia- 
tional total energy can be justifiably assumed to cancel out. This use of 
V~t . . . .  d would be on a quite different basis from the use of the Integral Hellmann 
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F e y n m a n  theorem,  a m e t h o d  which  fo rmal ly  excludes  k ine t ic  energy  b u t  which  
c a n n o t  exp la in  the  charge  d i s t r i b u t i o n  in  as m u c h  as it  is n o t  a v a r i a t i o n a l  
app roach .  
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